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The problem on the stability of the trivial solution of an autonomous system of 
ordinary differential equations is solved in the critical case of one zero root, 

m pairs of pure imaginary roots, and 4 roots with negative real parts. It is 
proved that the presence of the zero root, as a rule, leads to instability, which 
can be detected already from the form of the second-order series expansion of 
the right hand sides of the equations. In the degenerate case necessary and suf- 
ficient stability conditions have been indicated for a model (simplified)system; 
it is shown that the absence of additional degeneracy the instability of the 
original system follows from that of the model. Sufficient conditions for the 
asymptotic stability and instability of the original system have been obtained 

under the fulfilment 

1. Preliminary 
ential equations 

X* - = *4x* 

x* = (x1*, 

of the necessary stability conditions for the model system. 

remarks. We consider the system of ordinary differ- 

+ x, (x*)7 x, (0) = 0 (1.1) 

. . .( x*cn*), x, = (xl*, . . .) x,*) 

where X* and X * are n-dimensional vectors of the Euclidean space &, X, (x*) 
are holomorphic functions of x*, A = 11 a,, 11 is a constant n X n -matrix. The 
characteristic equation 11 a,, - &,h 11 = 0 has one zero root, m pairs of pure 

imaginary roots t_hi(i=l,..., L%), and Q roots with negative real parts 

(2m + q +1= n): if among the pure imaginary roots there are multiple ones, 

then simple elementary divisors correspond to them. By a nonsingular linear trans- 
formation we reduce system (l. 1) to the form 

Y; = Q*y, + Y, (Y*, G), G' = PA + -G (Y*, G) (1.2) 
y, = (lb*, . . ., &R+J, Y, = VI*, * - -, Yz'Amtd, 
z* = (q*, . . ., z**), 2, = (z1*, . . .( z,*) 

where the constant matrices Q* and P* have eigenvalues with zero and negative real 

parts, respectively. 
it is well known [l, 21 that the polynomial transformation 

U* = lil r&y*), u* = @I*, . . . , lx**), u* - (u!:‘, . . . , dlq)) (0 _ 

where u# (i = 1, . . ., q) are I -th-order forms in yi*, . . . , &I+I, helps to 
reduce the stability problem for the trivial solution of (1.2) to solving it for a “shorten- 

ed” system ( a group of Eqs. (1.2) in y,, in which Z* is replaced by u* (y*)), 
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if the question can be resolved for the latter problem by forms of order up to I, , 
inclusive, in the series expansion of functions Y, (y*, U* (y*)) in powers of y*. 
It is assumed below that the transformation mentioned has been implemented and 
that I, > 2. We write down the shortened system 

C = F (I;, Y, 9 (1.3) 

jl=k+r(C, y, Y), 3’ = --nY + p (51 Y, Y) 
y = (yl, . . ., ym), Y = VI, . . ., Y,), A= diag (5, .-., h) 

Here 5 is a real variable, 7~ and 3 are complex-conjugate vectors, A is thediagon- 
al matrix of the pure ima~nary eigenvalues, and the expansions of function F and 
of the complex-conjugate vector-valued functions Y and P in series with respect to 

5, y and ?j start with second-order terms. We transform system (1.3) by the non- 

linear replacements [3] 

to normal form up to terms of order *2, , inclusive, where x is a real variable, u 

and v are complex-conjugate vectors with components ui and vi (i = 1, . . ., m), 
and the complex-conjugate functions CDi(r) and Y&r) are Z th-order forms in 

x, U, u. Then in the new variables we obtain the following system [1,2]: 

x’ = & x(l) (5, u, u) + x (4 u, v) (1.4) 

u’ = Au + js u’“’ (2, u, v) + 27 (3, u, v) 

u’ czz c AU + l~zv(r)(x, u, u) + v (x, a, 4 

The expansions of function X and of the complex-conjugate vector-valued func- 
tions u and v start with terms of order higher than t,, while X0) is a real and 
UcEj and V(‘) are complex-conjugate vector-valued forms of order I, such that 

The only nonzero coefficients Rpokolo and Rp,~~l~ are those for which the integer- 
numerical vectors 
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satisfy one of the relations [33 

<(&l- Zo), A> =o, PO +I~ol+l~oI= l ( 1.5) 
((k, - Z,), A) = A,, ps +Ik,I+IZ,I= Z (s= 1,. . ., m) 

po,ps>O, j&l = Z j&j, 
j=l 

I L? I = j; h 

where p. and ps are integers. We can satisfy ourselves that relations (1.5) are 
fulfilled identically with respect to h, if 

ko, = Zoj, k,j = Z,j + 6,j (s, j = 1, . . ., m) 

where 6,j is the Kronecker symbol. If 1 is even, then p. = 0, 2, . . . , 1; ps = 
1, 3, . . .) Z-4; if Z isodd, then p. = 1, 3, . . ., I; ps=0,2,. . ., 
Z - 1. But if A satisfies the internal resonance condition [4] 

(P,, A) = 0, P, = (P?I, . . ., P,,), I P, ( = K (r = 1, . . . . r*) (1. Q 
theninEqs.(1.4)for Z= K - 1,. . ., Z* there appear additional internal reson- 
ance terms supplied by (1.5) and (1.6). In the presence of multiple roots (K = 2) 
the additional internal resonance terms appear for 1 = 2, . . . , I,. 

2. I n s t a b i 1 i t y t h e o I e m. We pass to polar coordinates by the form- 
ulas U, = ps exp (8,) and v, = p8 exp (-if3,) (s = 1, . . ., m). Then, 
by what was said above, the group of equations for x and pS has the form 

2’ = @ + *jr %Pi3 + x0 (PI q.+ Xl (x7 p, 0) 
(2.1) 

pSS = b,zp, + RoS (x9 P, 0) + Ri, (x, P, e) (S = I, . . ., m) 

Here X and Ri, are holomorphic functions of z and pS , with coefficients that 
are polynomials-in cos es and sin 8, and containing terms of order no lower 
than third relative to x and pS; X0 and Ro, are the resonance terms supplied by 
(1.5) and (1.6) when K = 2, 3 (and equal identically to zero in the absence of 
multiple roots and of third-order resonance), being second-degree polynomials in pS 
and in x and pS , respectively, with coefficients linear in cos 8, and sin 8,; 

g, Ui and b, are real constants. 
We consider the functions 

where y is a positive constant subject to choice. The derivative of w relative to 
system (2.1) is 

4 W’ = x 2 b,pB2 - (1 + y) 
8-l 

Tdl+” (gS2 + 2 aif3i”) + 
i=l 

m 

c 
pa (Ros + RI,) - (1 + Y) s+*~ (Xo + XI) 

r=1 
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In a neighborhood of zero x2 -j- p12 + . . . + pm2 < A, A > 0 t we consider 
the domain W < 0 which belongs to domain VV’ > 0 for a sufficiently large 

Y l 
We determine the value of derivative F%” on the boundary W = 0 

+ W,,’ = - (1 + y) gx3+2y + x 2 b,p2 + 2 paRa + o (~3’3~) 
S--,l s=1 

Let g 2 0. By choosing y sufficiently large we can achieve Wo’ 5 0. The 
functions v and w satisfy Chetaev’s two-function instability theorem [S]. We state 
the following result. 

Theorem 1. If g=#=O, the trivial solution of system (2.1) (and hence, 
of (1.1)) is Liapunov-u~table, 

Thus, the presence of one zero root in the fear-approximation characteristic eq- 

uation, when the others are pure imaginary and with negative real parts, leads, as a 
rule, to instability which can now be detected by second-order forms. Obviously, the 
case g = 0 should be considered degenerate. We note that to find g it is enough 
to take the linear-approximation system to the canonic form and to pick out, in the 
equation for the variable corresponding to the zero root, the coefficient of the square 

of this variable. The coefficient picked out is g. 

3. Case g = 0. Henceforth we assume the absence of multiple roots. At 
first let third-order resonances not be present in the system. Then in system (2.1) 
x,=~,,~O(S=I,. . .,m) andwehave 

5’ = 2 UifYbi2 + X* fx, fl? e, 
i=l 

(3.1) 

ps’ = b,xps + RI, (x, p, 0) (s = 1, . . ., m) 

Let us show that the existence of pairs of coefficients a,, and b,, such that 

czswbsc > 0 leads to instability. Indeed, in this case, for a model system truncated 

up to cubic terms there exists a ray-type growing solution 

p’ = Jfas,bs,p2, 5 = kp, Ps, = p, pi wz 0 

(i = 1, . . . , m; i #s*), k2 = ? 

The instability of the complete system is proved in the usual manner by the scheme 

in [4]. 
Now suppose that aibi ( 0 (i = 1, . . ., m). Then a sign-definite integral 

obtains, whose existence proves the stability of the model system. If one of the co- 

efficients ai and bi is zero, while the rest are such that afbj < 0 (i = 1, . . ., 

m; i # 0, then the model system has the growing solution 

X= 203 pi = Pi& 
bird 

, f3j = 0 (i = 1, . . ., m; j # i), lli = 0, 

bi +O 
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X = X0 + UiPiO’t, pi = PiOf 

ai # 0, bi = 0 
Qj = 0 (j = 1, . . ., m; j # i), 

where z. and Pi0 are constants, However, we have been unable to prove the in- 
stability of the complete system in these cases. 

T h e o I e m 2. A necessary and sufficient stability condition for a model 
system truncated up to cubic terms is aibi < 0 (i = 1, . . ., m), and equality 
is achieved only if ai = bi = 0. If a pair of coefficients a,, and b,, exists 
such that asxb,, > 0, then the trivial solution of system (3.1) (and, hence, of 
(1.1)) is Liapunov-usable, 

Now let a third-order resonance, say h, = Zh, , hold in the system. Restricting 
ourselves (without loss of generality) to the case m = 2, let us show that the addi- 
tion of a weak resonance [S] to a neutral zero root (all aibi < 0) can lead to the 
instability of the whole system. According to the necessary and sufficient conditions 
for the weakness of the resonance Ai = 2h, [7], system (2. l), after the addition 
of equations in 8, under the assumptions made, can be written as 

2’ = qh2 + a2p22 + X1(x, Pit p2, %, 9,) (3.2) 

~1’ = biqpl +cpa2 cos 0 + Rrr (x, pi, ~2, 81, 82) 

~2’ = b,xp, + PIPS ~0s 8 + &2 (5, ~1, ~27 81, 02) 

p1p2f3’ = -tcp22 + fh2)p2 sin 0 + 6 (x, pb p2, 61, @,> 

8 = 28, - Bit albl c 0, a,b, < 0, c < 0 

where the series expansions of function @ in x, PI and pa, with coefficients 
that are polynomials in sin 8, and cos 8, (s = 1, 2), start with terms of order 
no lower than fourth. Let us consider the model system obtained from (3.2) by dis- 

carding X1, Rri, R1s and 0. Then, if y, yl- and y2 (~1,s > 0) exist such 
that the conditions 

W12 + QY? 
Y 

= bly + + = b21' + Yl 

ace fulfilled, which is possible under specific relations between a,, b, and c, then 

the model system has a ray-type growing solution 

5 = ‘yp, pr = YIP, p2 = ‘~43, p’ = bp2, 6 = 0, b > 0 (3.3) 

The instability of the complete system when ray (3.3) exists can be proved by the 

scheme in [S]. 

4. Investigation on higher-order terma. We now 

assume that the system does not have a K th-order resonance, 2 < K < N + 1 

w > 3) and that the necessary conditions for stability with respect to second- 

order terms, i. e., g = 0 and aibi < 0 (i = 1, . . ., m) and equality 

Uibi = 0 is possible only if ci = bi = 0 s are fulfilled. ln this case, obvious- 

ly* we can always achieve ai = -bi fi = 1, . . . , mf by a change of variables. 

ln(2.1) we pass to (m + 1) - dimensional spherical coordinates by the formulas 
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5 -= r cosfpl, ps = r ~0s (P~+I ii sin qj, pm=rksin6pj 

jc1 j=l 

(s = 1,. . . , m - 1) 

O<qpl,<n, O<vj<+ (j = 2,. . .,m) 

In the new variables we have 

r’ = r2Rt2) + r3R@) + . . . + @R(N) + . . . (4.1) 

‘pl’ =: r@F) + rz@f) .+ . . . + rN-l@~Nml)+ . . ., (h sin q~j) cps’ = 
‘j=l 

r@y’ + . . . + 7-N-Q~N-1f + . . . (s = 2, . . . , mf 
m-l 

oi”’ -- 2 b,eos~cg,,,~ 

m 

( 
sin2 cpi + b, n sin2 ‘pi sin cpl 

i=l j=2 j=2 
1 

where R(l) and cD),(r-1) (s =I 1, . . . , m; 1 = 2, . . ., N) are polynomials 
in Sinipj and ~oscppj (j=I,. . .,m) and the terms not written out are of 

the following orders relative to r : higher than iv in the equation in r and higher 

than N - 1. in the equations in cpi; Rt2) G 0. 
We consider the following angle values: 

cpl = ‘pIa = 0, 3%; qj = (pj’ = const (j = 2, . . ., m) (4.2) 

The fo~ow~g statement is valid. 

T h e o r e m 3. If the condition 

Rc3) (rp”) = , . . = RU”-i) (9”) zz.z 0, R(N) (9’) > 0 

is fulfilled on even one angle value (4.2), the trivial solution r = 0 is Liapunov- 
unstable, However, if 

R(s) (9”) = . . . z RW-0 (q”) = 0, f(W) (qj’) < 0 

on all values (4.2) and all coefficients b, (s = 1, . . . , m) are of one sign, then 

asymptotic stability obtains, 

N o t e, The case when among the coefficients b, (s = 1, . . . , m) there is 
even one change of sign or there are zero coefficients, requires an individual analysis. 

p r o o f. We assume that reduction to normal form (1.4) up to Nth-order terms, 

inclusive, i. e., I, > N in (1.4), has been carried out. Consequently, the func- 
tions Q,(l) contain Sin qpl as factors, while the functions @g(i) (s = 2, . . . , m) 
contain 

cos cps sin qpI fi sin Cpj 

I.e., 
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N” l(6.2) = 0, & 0:“’ /f4.2j = 0 (s = 2, . . . , m; E = 2, . . . , N- 1) 

Therefore, in the first case a ray-type solution 
. 

r = 7-N R(N) (cp”), I?(N) (cp”) > 0 (4.3) 

where qiO (i = 1, . . ., m) are from (4.2), exists for the system truncated up to 
(N + 1) St-order terms. The instability of the complete system is proved by con- 

structing a ‘Chetaev function in a neighborhood of ray (4.3), as in ~41, 
TO prove the theorem’s second assertion we consider the unction 

V = r exp (h cos ql), h = const 

The derivative of function (4.4) relative to Eqs, (4.1) is 

(4.4) 

Y’ = rv 
1 
rH@) + . . . + $v-ZR’N - h [ jjl bi co9 (pi+l fI sin2 vpj + 

i=r +a 

b,ii. ] sin2 cpj sins ‘pl - h sin ql [&is’ + . . . + rwI?~N-~) 
j=Z 

1 + .*.} 

where the terms not written out are of order higher than N - 2 relative to r, 
Since the functions R(i) and @f’-” (1 = 3, . , . , N) (except RcN)) contain 

sin %pr and sin ~1, respectively, as factors, while all bi. are of one sign, say, 
positive (which can always be achieved by replacing x by --z in (2. l)), we can, by 
choosing a sufficiently large h > 0 , achieve the negative definiteness of I” in 
the domain I” < A, where A is some sufficiently small positive number. A 

function V thus defined satisfies Liapunov’s asymptotic stability theorem [8]. 
The theorem proved yields the following simple criterion. If under the assumptions 

in Sect.4 we have 
. 

x = AoxN + ArxN+’ + . * . 

in (1.4) when rJ,=r,Y= 0 , then the trivial solution is unstable when Ar is even 
andwhen A@>0 if Nisodd. However, if N is odd and A ,, < 0, then the 
trivial solution is asymptotically stable if there are no changes of sign among the b, 

(s= 1,. * .f 4. 

The authors thank v. V. Rumiantsev and A. L. Kunitsyn for attention to the work. 
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