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The problem on the stability of the trivial solution of an autonomous system of
ordinary differential equations is solved in the critical case of one zero root,

m pairs of pure imaginary roots, and ¢ roots with negative real parts. It is
proved that the presence of the zero root, as a rule, leads to instability, which
can be detected already from the form of the second-order series expansion of
the right hand sides of the equations, In the degenerate case necessary and suf-
ficient stability conditions have been indicated for a model (simplified)system;
it is shown that the absence of additional degeneracy the instability of the
original system follows from that of the model. Sufficient conditions for the
asymptotic stability and instability of the original system have been obtained
under the fulfilment of the necessary stability conditions for the model system,

1, Preliminary remarks, We consider the system of ordinary differ-
ential equations

Zy = Az, + Xy (2y), X4 (0)=0 (L1
Ty = (;*, . . ., .¥), X,=(X*, ..., X%

where 4 and X, are n-dimensional vectors of the Fuclidean space E,, X, (z,)
are holomorphic functions of 4, 4 =1{| a,s|| is a constant n X n -matrix, The
characteristic equation || a,s — 6, || = O has one zero root, m pairs of pure
imaginary roots —+A; (i=1, ..., m),and g roots with negative  real parts
(2m + ¢ + 1= n); if among the pure imaginary roots there are multiple ones,
then simple elementary divisors correspond to them. By a nonsingular linear trans-
formation we reduce system (L 1) to the form

Y = Qula + Y (Yar 24)s  Zs = PaZy + Zy (Yus 24) (1.2)

Yse = (yl*r voe ey y§m+l)r Y* = (Yl*: .oy Y;(.‘MH)’
Ty = (2%, oy B%), T = (Zi%, « .« .y Zg¥)

where the constant matrices Q4 and P, have eigenvalues with zero and negative real
parts, respectively.
it is well known [1, 2] that the polynomial transformation

Ly
1 ! 1 10)
u* = IEI ua(k) (y*)) u* = (ul*v L ] uq*)a ua(g) = (uSI)y c ey u-q)
=1
where ue® (i =1, ..., q) are [-th-order formsin i*, ..., Y¥ms, helpsto

reduce the stability problem for the trivial solution of (1. 2) to solving it for a "shorten-
ed" system ( a group of Egs, (1.2) in y,, inwhich 2z, isreplaced by u, (y4),
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if the question can be resolved for the latter problem by forms of orderup to 1, ,

inclusive, in the series expansion of functions Y, (¥4, Ux (¥x)) in powers of y,.
It is assumed below that the transformation mentioned has been implemented and
that ], > 2. We write down the shortened system

C=F(y Y _ B (1.3)
Y= - -l¥m), Y=Yy, ...,Yy), A=diag (A, ..., Ap)

Here { is a real variable, y and y are complex-conjugate vectors, A is thediagon-
al matrix of the pure imaginary eigenvalues, and the expansions of function F and
of the complex-conjugate vector-valued functions Y and Y in series with respect to

T, ¥ and ¥ start with second-order terms. We transform system (1. 3) by the non-
linear replacements {3]

[
1
(=2 + N E @)
=9

Iy Iu
y=u- Z (D(l) (xr u, v)v .17 = 2 ‘F(l) (xv u, v)
(l) ((D(!), e, (l))’ \y(l) (\F(z) e, 11,-;11))

to normal form up to terms of order ‘l* , inclusive, where x is a real variable, u
and v are complex-conjugate vectors with components %; and v; (i=1, .. ., m),
and the complex-conjugate functions @ and W) are [ th-order forms in
z, u, v. Then in the new variables we obtain the following system [1, 2]:

lx
z = 2 XY, u,0)+ X (z,u,v) (1.4)
I==2
s
w = Au+t+ DUz, u,v)+ Uz uv)
1=2
Iy
v = — Av+ V(”(x, u, vy -+ V (z,u,v)
=2

The expansions of function X and of the complex-conjugate vector-valued func-
tions U and V start with terms of order higher than I, while X® is a real and
U® and VO are complex-conjugate vector-valued forms of order [, such that

t \ k k, 1 !
x® = hy Rpgego2Pouy™ . . w 0mpy™ L. v om
ot Kol-lo|=!
U(l) J— 2' R Ps¥s1 smpts1 Lsm 1
s = PR T WS sy s (5 = yoee,m)
Ptk =L

The only nonzero coefficients Rpxit, and R'psksls are those for which the integer-
numerical vectors

ks = (ksl’ AR ksm)’ Zs = (lsla ey zsm)v ksjy lsj = 0
(s=0,1,...,m
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satisfy one of the relations [3]

(ko — L), AD>=0, po+lkol+|lo|l=1 (1.9)
ks — L), A)—’vs,ps-}—lkl—i-lll-—l (s=1,...,m)
Po» Ds > |ka|— ka Ilsl— zlsJ

where p, and p, are integers, We can satisfy ourselves that relations (1, 5) are
fulfilled identically with respect to A, if

k0j=l0]’, ksj=lsj+63j (S,j=1,. . ey m)

where 8,; is the Kronecker symbol, If ! is even, then p,=0, 2, ...,5; ps =
1,3, ..., 1 —1;if lisodd, then po, =1, 3, ..., I; p, =0, 2,
I — 1. Butif A satisfies the internal resonance condition [4]

<PryA>=0’ Pr=(Pr17--'7 rm) |P|_K(r=1 ’r*) (1.6)
then in Eqs. (L.4) for I= K — 1, ..., Iy there appear additional internal reson-
ance terms supplied by (1,5) and (1.6), In the presence of multiple roots (K = 2)
the additional internal resonance terms appear for [ = 2, . . ., ly.

2, Instability theorem, We passto polar coordinates by the form-
ulas u, = p, exp (i) and v, = p, exp (—iB) (s=1,...,m). Then,
by what was said above, the group of equations for z and p, has the form

) 3 R 2.1
& = gt + 3 aip? + Xo(p, )+ X (2., 6) (&

ps = bsxp; + Ros (2, p,0) + Ris (2, 0,0) (s=1,...,m)

Here X and Ris are holomorphic functions of z and p,, with coefficients that
are polynomials in cos 8, and sin 0, and containing terms of order no lower
than third relative to = and p,; X, and R, are the resonance terms supplied by
(1.5) and (1.6) when K =— 2, 3 (and equal identically to zero in the absence of
multiple roots and of third-order resonance), being second-degree polynomials in p;
and in r and p,, respectively, with coefficients linearin cos 8, and sin 6;;
g, a; and p, are real constants,
We consider the functions

m
V=z, W=D p>— z20+V)
8=]1
where ¥ is a positive constant subject to choice. The derivative of W relative to
system (2, 1) is

W =2 i bips? — (1 4 ) 2+ (ga* + i aps) +

8=1 i=1
m

Y00 (Rou+ Ru) — (L + 1) 242 (Xo + X;)

s$=1
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In a neighborhood of zero 2 + py® 4 ... + p,2 < 4, 4 >0 , we consider
the domain W < O which belongs to domain VV" >> 0 for a sufficiently large
Y . We determine the value of derivative W' on the boundary W = 0

m m
1 .
S Wo = — (1) ge 2 Y b+ Y oulas + 0 (a¥)
== $=1
Let g = 0. By choosing vy sufficiently large we can achieve W, <<0. The
functions V and W satisfy Chetaev's two-function instability theorem [5]. We state
the following result.

Theorem 1, If g == 0, the trivial solution of system (2, 1) (and hence,
of (1, 1)) is Liapunov-unstable,

Thus, the presence of one zero root in the linear-approximation characteristic eq-
uation, when the others are pure imaginary and with negative real parts, leads, asa
rule, to instability which can now be detected by second-order forms, Obviously, the
case g ==0 should be considered degenerate, We note that to find g it is enough
to take the linear-approximation system to the canonic form and to pick out, in the
equation for the variable corresponding to the zero root, the coefficient of the square
of this variable, The coefficient picked out is g.

3, Case ¢ ==0. Henceforth we assume the absence of multiple roots, At
first let third-order resonances not be present in the system, Then in system (2.1)
X,= Ry, =0(s=1,... m) andwe have

E 3.1
= X a8+ Xi(x,p,0) @9
1=}

Ps' = bgap, -+ Ry (z, 0, e) (S= 1, ..., m)

Let us show that the existence of pairs of coefficients a,, and b, such that
a.bs, > 0 leads to instability. Indeed, in this case, for a model system truncated
up to cubic terms there exists a ray-type growing solution

p. = Vas&bsx-pz’ X = kp" ps* = p’ p'i = 0
a
(i=1,...,mi5s8), k2=—bsi

The instability of the complete system is proved in the usual manner by the scheme
in [4].

Now suppose that @;b; << 0 (i = 1, ..., m). Then a sign-definite integral
m
2 % 2 t
e — —b—pz = COons
i=1 "

obtains, whose existence proves the stability of the model system. If one of the co-
efficients a@; and b; is zero, while the rest are such that g;b; << 0 (j =1, .. .,

m; j # i), then the model system has the growing solution
T = Zo, Pi =pioebix°iv PJ=0 (]x 1y e ey g ]:7‘: i)v a; == Os

by # 0
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=20+ aipi®, Pi=pi0 ;=0 G=1,...,m j=1i),

a; 5= 0, bi =0
where z, and p;, are constants, However, we have been unable to prove the in-
stability of the complete system in these cases.

Theorem 2, A necessary and sufficient stability condition for a model
system truncated up to cubic terms is a;b; <C O (i=1, ..., m), andequality
is achieved only if a; = b; = 0.  If a pair of coefficients a,, and b,, exists
such that a,,b,, > 0, then the trivial solution of system (3, 1) (and, hence, of
(1. 1)) is Liapunov-unstable,

Now let a third-order resonance, say A, = 2A, , hold in the system, Restricting
ourselves (without loss of generality) to the case m == 2, let us show that the addi-
tion of a weak resonance [6] to a neutral zero root (all a;b; < 0) can lead to the
instability of the whole system, According to the necessary and sufficient conditions
for the weakness of the resonance Ay == 2A, [7], system (2, 1), after the addition
of equations in 08, under the assumptions made, can be written as

z' = mp® + a0,® + X1 (2, p1, p2r 01, 6,) (3.2)
p1 = bizpr +ep,? cos B + Ry (z, p1, g, 01, )

P2 = byxpy + pips c0s 8 + Ry (z, P, P2, B4, 0,)

P10:8" = —(eps® + pi®)p, sin 6 + O (2, p1, Py, By, By)

0 =20, — 6y, a:by <0, a0,<<0,c<<0

where the series expansions of function © in z,p1 and 04, with coefficients
that are polynomials in sin 0, and cos 0, (s =1, 2), start with terms of order
no lower than fourth, Let us consider the model system obtained from (3, 2) by dis-
carding X1, Ry, Riz and ©. Then, if 9, y;~ and 7y, (71,5, > 0) exist such
that the conditions

vy + aave? o
v = by -+ T by + ™1

are fulfilled, which is possible under specific relations between aqg, b, and ¢, then
the model system has a ray-type growing solution

T=1p, pr="1p, P2 =="Top, p = bp?, 6=0,52>0 (8.3)
The instability of the complete system when ray (3. 3) exists can be proved by the
scheme in [4].

4, Investigation on higher~-order terms, We now
assume that the system does not have a K th-order resonance, 2 < K C{ N + 1
(N >>3) and that the necessary conditions for stability with respect to second-

order terms, i,e,, g=0 and a;b; <O(i=1,...,m) and equality
a;b; = 0 is possible only if g; == b; = 0 , are fulfilled. In this case, obvious-
ly, we can always achieve a; == —b; (i ==1, . . ., m) by a change of variables,

In(2.1) we pass to {m -+ 1) - dimensional spherical coordinates by the formulas
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Z = rcosQy, Qs =T COSPgy 11 sinQ;, ppm = rH sin @;
! o
s=1,...,m—1)

I<ou<n, 0<g<—5 ((=2,...,m)

In the new variables we have

r'=r:R® 4 PRG) 4 | 4 pNRM™ | (4.1)
@1 = r®® 4 20® 4 rN‘l(DiN"l)—}— R (fl sin (Pj) Q5 =
rd® 4 .. +-ﬂ“4dﬂ”‘”-k (s::2 ..,;;1
m—1
P = ( D! b; cos q)mH sin? @; + by, H smch,)‘;ln 1
i=1 j=2
where R® and @MV (s=1,...,m; I=2,..., N) are polynomials
in sin @; and cos @; (j =1, ..., m) andthe terms not written out are of

the following orders relative to r : higher than N in the equation in r and higher
than N - 1 inthe equationsin @;; R(® = 0.
We consider the following angle values;
pr=0¢" =0, 7 @j=¢@;°=const j=2,...,m) (4.2)
The following statement is valid.
Theorem 3, If the condition
R® (7)) = ... = RW™V (¢ =0, R™ (¢°) >0

is fulfilled on even one angle value (4.2), the trivial solution r == 0 is Liapunov-
unstable, However, if

R® (¢°) = . . . == RN~ (¢°) = 0, R®™ (¢°) < 0

on all values (4, 2) and all coefficients b, (s ==1, ..., m) are of one sign, then
asymptotic stability obtains,

N ote, The case when among the coefficients b, {(s==1, ..., m) thereis
even one change of sign or there are zero coefficients, requires an individual analysis,

Proof, We assume that reduction to normal form (1.4) up to N th-order terms,
inclusive, l.e., [, > N in(1.4), has been carried out, Consequently, the func-
tions @, contain sin ¢, as factors, while the functions @ (s =2,...,m)
contain

€OS @5 Sin @ H sin @;
=1
i.e.,
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1
(Dy)lu-e) =0, CDQ’I(M) =0 (s=2,...,m;1=2,...,N—1)

sin @,

Therefore, in the first case a ray-type solution
r=rNRM (¢°), RM(¢°) >0 (4.3)

where @;°(i==1,...,m) are from(4.2), exists for the system truncated up to
(N + 1) st-order terms, The instability of the complete system is proved by con-
structing a Chetaev function in a neighborhood of ray (4.3), as in [4].
To prove the theorem's second assertion we consider the function

V =rexp (k cos ¢1), h = const 4.4)
The derivative of function (4, 4) relative to Eqs, (4.1) is

M1 i

V=1V {m(a) + .o 2R [ 2 bicost i [ sin? q; +
i1 i=2

m
bm 1] sin? (pj] sin?@; — hsin @ [rO® 4 ... 4 rN2™D] 4 }

j=2
where the terms not written out are of order higher than N — 2 relative to r,
since the functions R® and @ (1=3, .., N) (except RM) contain

sin 2¢; and sin @, respectively, as factors, while all b, are of one sign, say,
positive (which can always be achieved by replacing z by —x in (2. 1)), we can, by
choosing a sufficiently large & >> 0 , achieve the negative definiteness of V~ in
the domain r < A, where A is some sufficiently small positive number, A
function V thus defined satisfies Liapunov's asymptotic stability theorem [8],
The theorem proved yields the following simple criterion, If under the assumptions

in Sect,4 we have

z =AN + 4.V ..

in(1,4) when u == v =0 , then the trivial solution is unstable when N is even
and when A4, >0 if N isodd, However, if N isodd and A4,<< 0, thenthe
trivial solution is asymptotically stable if there are no changes of sign among the b,
s=1,...,m.

The authors thank V, V., Rumiantsev and A, L. Kunitsyn for attention to the work.
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